Saturn Entry Probe Potential

for Uranus and Neptune Missions

Thomas R. Spilker, Jet Propulsion Laboratory / CIT David H. Atkinson, Univ. of Idaho

9th International Planetary Probes Workshop
Toulouse, France
2012 June 18

Organization

- Science objectives for Saturn, Uranus, & Neptune entry probe missions
 - From the US 2012 Planetary Science Decadal Survey (PSDS)
- Entry probe mission characteristics at these destinations
- Conclusions

PSDS Saturn Probe Science Objectives

"Highest Priority"

- Determine the noble gas abundances and isotopic ratios of H, C, N, and O in Saturn's atmosphere
- Determine the atmospheric structure at the probe descent location

"Lower Priority"

- Determine the vertical profile of zonal winds as a function of depth at the probe descent location(s)
- Determine the location, density, and composition of clouds as a function of depth in the atmosphere
- Determine the variability of atmospheric structure and presence of clouds in two locations
- Determine the vertical water abundance profile at the probe descent location(s)
- Determine precision isotope measurements for light elements such as S, N, and O found in simple atmospheric constituents

PSDS Uranus Probe Science Objectives

"Medium Priority"

- Determine the noble gas abundances (He, Ne, Ar, Kr, and Xe) and isotopic ratios of H, C, N, and O in the planet's atmosphere and...
- the atmospheric structure at the probe descent location

"Lower Priority"

- Determine the vertical profile of zonal winds as a function of depth in the atmosphere, in addition to...
- the presence of clouds as a function of depth in the atmosphere

PSDS Neptune Probe Science Objectives

- Not specified in the PSDS
- Likely similar to Uranus objectives
 - Consistent with science priorities in 2003-2004 NASA Vision Missions studies
 - High Triton science priority might limit trajectory design options
 - Triton's orbit is retrograde, inclination 157°

Saturn Entry Probe Science Objectives: What's the Big Picture?

- Composition Measurements
 - Clues to the composition of the presolar nebula
 - Giant planet and solar system formation processes and timeline
 - Critical component of understanding Saturn's thermal evolution (He), heat flow, and radiation balance
 - Search for chemical evidence of planetary migration
 - Need to penetrate to the 5-10 bar level
- Atmospheric Structure Measurements
 - Context for the composition measurements
 - Atmospheric heat flow and radiation balance
 - Energy source(s) for deep zonal winds
 - Depth of solar energy deposition
 - Static stability, propensity for convective mixing

Progress in Solar System Origins Research from **Giant Planet Comparative Planetology**

Data Set Needed for Meaningful Comparisons

Planet> Investigation	Jupiter	Saturn
Atmospheric Composition		
Interior Structure		

Green Background: Data already in hand

Progress in Solar System Origins Research from **Giant Planet Comparative Planetology**

Data Set Needed for Meaningful Comparisons

Planet> Investigation	Jupiter	Saturn
Atmospheric Composition	Galileo Probe	
Interior Structure		

Green Background: Data already in hand

Progress in Solar System Origins Research from Giant Planet Comparative Planetology

Data Set Needed for Meaningful Comparisons

Planet> Investigation	Jupiter	Saturn
Atmospheric Composition	Galileo Probe	
Interior Structure	Juno	

Blue Background:

Data planned from a mission already in flight

Progress in Solar System Origins Research from Giant Planet Comparative Planetology

Data Set Needed for Meaningful Comparisons

Planet> Investigation	Jupiter	Saturn
Atmospheric Composition	Galileo Probe	
Interior Structure	Juno	Cassini Proximal Orbits

Blue Background:

Data planned from a mission already in flight

Progress in Solar System Origins Research from Giant Planet Comparative Planetology

Data Set Needed for Meaningful Comparisons

Planet> Investigation	Jupiter	Saturn
Atmospheric Composition	Galileo Probe	Saturn Probe
Interior Structure	Juno	Cassini Proximal Orbits

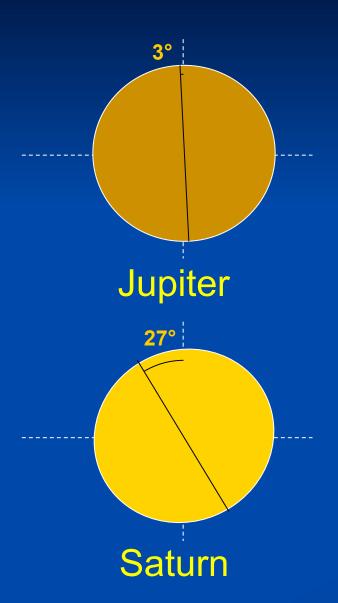
Yellow Background:

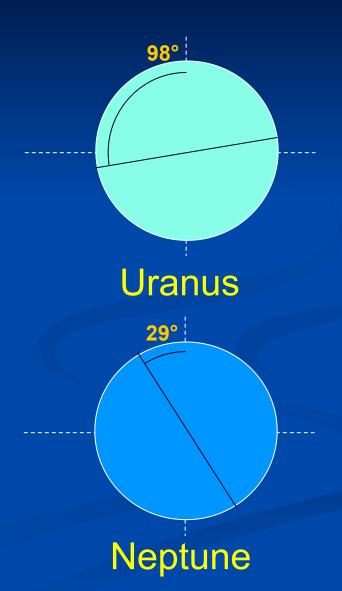
No mission yet approved to acquire data, but recommended by 2012 Decadal Survey

Bulk Characteristics of the Giant Planets

Characteristic Planet	Mass (Earth masses)	Equatorial radius (km)	Mean mass density (gm/cm³)
Jupiter	317	71490	1.32
Saturn	95	60330	0.68
Uranus	14.5	25500	1.27
Neptune	17.1	24770	1.64

Bulk Characteristics of the Giant Planets




Characteristic Planet	Atmospheric Helium Abundance	Icy Element Abundance (x Solar)	Tropopause Temperature (K)
Jupiter	11-12%	3-6	110
Saturn	13±5%	5-10?	90
Uranus	18%?	20-50?	50
Neptune	18%?	20-50?	50

Obliquities of the Giant Planets

Typical Atm-Relative Entry Speeds At the Giant Planets

Speeds in km/s; assume "typical" hyperbolic approach V_∞

Entry Orbit Inclination Destination	0° (prograde)	90° (polar)	180° (retrograde)
Jupiter	47.4	59.8	72.4
Saturn	26.8	36.5	46.3
Uranus	21.5	24.0	26.6
Neptune	25.5	28.2	30.8

Color-coded entry condition indicators assume shallow entry angle

Conclusions

- High-priority entry probe science objectives at Uranus & Neptune are similar to those at Saturn
 - Can be addressed by similar instrumentation
- In most entry circumstance cases, entry conditions for Uranus or Neptune entries are similar to Saturn conditions
- Simple descent module thermal design could accommodate differences in tropopause temperatures
- Program of entry probes to Saturn, Uranus, & Neptune would be cost-effective and provide exceptional science value

Questions?